Самодельная цифровая паяльная станция на ATMega8 своими руками. Simple Solder MK936. Простая самодельная паяльная станция своими руками Паяльная станция на микроконтроллере

Паяльник - основной инструмент тех, кто хоть как-то связан с электроникой. Но большинство обычных паяльников пригодны лишь для пайки кастрюль, более-менее нормальный паяльник с термостатом и сменными жалами стоит недешево, а про паяльные станции и говорить нечего. Предлагаю собрать несложную паяльную станцию не особо отличающуюся по функциональности от серийных.

Схема

Микроконтроллер работает как термостат: получает данные от термопреобразователя и управляет транзистором, который в свою очередь, включает нагреватель. Заданная и текущая температура паяльника отображаются на семисегментном индикаторе. Кнопки S1-S4 служат для задания температуры с шагом 100°С и 10°С, S5-S6 - для включения и отключения станции (ждущий режим), S7 - переключает режим индикации температуры: текущая температура либо заданная (в этом режиме её можно изменить). Работа нагревателя отображается светодиодом LED1. В случае отключения питания последняя заданная температура сохраняется в энергонезависимую память EEPROM и при последующем включении станция начинает нагрев до этой температуры.
Детали
В станции использован сетевой трансформатор на 18В 40Вт, диодный мост любой, способный выдержать ток 2А и обратное напряжение 30В, например КЦ410. Интегральный стабилизатор напряжения 7805 нужно прикрутить к радиатору размером не менее спичечного коробка. Фильтрующие конденсаторы С1 - электролитический на 100-500мкФ, С2 при большом желании, можно убрать. Индикатор - любой на три разряда с динамической индикацией и общим анодом, лучше его спрятать за светофильтром. Токоограничительные резисторы R8-R11 сопротивлением 330Ом-1кОм. Кнопки S1-S6 без фиксации, желательно тактовые, S7 - тумблер или кнопка, но с фиксацией. Резисторы R1-R7 - любые, сопротивлением 10кОм-100кОм. Транзистор Т1 - N-канальный MOSFET, управляемый логическим уровнем, допустимым напряжением сток-исток не менее 25В и током не менее 3А, например: IRL3103, IRL3713, IRF3708, IRF3709 и др. Микроконтроллер ATmega8 с любым суффиксом и корпусом(на схеме нумерация контактов для DIP-корпуса). Из фьюзов меняем лишь CKSEL: настраиваем на внутренний генератор 8МГц CKSEL3...0=0100, остальные не трогаем. Такая схема не требует ни какой настройки и работает сразу (если её правильно собрали).

Паяльник

В схеме предусмотрено использование паяльников используемых в серийно выпускаемых паяльных станциях, например Lukey или AOYUE. Такие паяльники продаются в качестве запасных частей и стоят чуть дороже ранее упомянутых паяльников для кастрюль. Основное отличие, которое нас волнует - это тип датчика температуры, он может быть терморезистором или термопарой. Нам нужен первый. Такой тип преобразователя подходит для паяльников внутри которых находится керамический нагревательный элемент HAKKO 003 (HAKKO A1321). Пример такого паяльника используется в паяльных станциях Lukey 868, 852D+, 936 и др. Такой паяльник стоит дороже, но считается более качественным.

В заключение

Паяльники Lukey имеют для подключения станции разъем PS/2, у AOYUE - похож на старый советский разъем для подключения магнитофона. В интернете можно найти их распиновку, а можно просто срезать разъем и припаяться прямо к плате. Чтобы узнать где какой провод, можно померить сопротивления: у нагревателя будет около 3 Ом, а у терморезистора примерно 50 Ом (при комнатной температуре).
Почти все современные паяльники для паяльных станций имеют возможность заземлить жало, воспользуйтесь ней для защиты паяемых деталей от статических разрядов.

А вот что получилось

Паялось все ЭПСНом с намотанной на жало медной проволокой. О миниатюризации тогда не думал.





Внутренности фотографировались два года назад, когда её только сделал, поэтому внимательные читатели могут заметить реле (заменено транзистором) и преобразователь для термопары(красненькие резисторы и подстроечник в левом нижнем углу).

После того, как меня окончательно измучила моя паяльная станция 40 Вт неизвестного происхождения, я решился на создание паяльной станции своими руками профессионального уровня на АТМега8.

На рынке представлена недорогая продукция разных производителей (например, AIOU / YOUYUE и др.). Но у них, как правило, есть какой-то значительный дефект, либо спорный дизайн.

Предупреждаю: эта цифровая паяльная станция нужна, чтобы единственно паять, без лишних украшений типа AMOLED-дисплеев, сенсорных панелей, 50-ти режимов работы и интернет-управления.

Но все же у него будет несколько особенностей, которые вам пригодятся:

  • неактивный режим (поддерживает температуру 100-150°С, когда паяльник лежит на подставке.
  • таймер автоматического отключения, чтобы забывчивость не стала причиной пожара.
  • УАПП для отладки (только для данной сборки).
  • дополнительные разъемы на плате для подключения второго паяльника или фена.

Интерфейс достаточно прост: я сделал две кнопки, поворотный регулятор и ЖК-дисплей 16х2 (HD44780).

Для чего делать станцию самому

Пару лет назад я приобрел паяльную станцию через интернет, и, хотя работает она до сих пор хорошо, я устал работать с ней из-за дурацкого дизайна (короткий шнур питания, обдув не компрессорный и короткий неотсоединяемый шнур жала). Из-за недочетов в дизайне эту станцию даже на столе переставлять неудобно, корпус крутится вслед за жалом. Нутро было залито термоклеем, неделя ушла только на очистку компонентов и устранение мелких и крупных недостатков.

Крепление шнура подставки паяльника держалось на честном слове, изоляция постоянно сбивалась, а это и разрыв провода, и возможный пожар.

Шаг 1: Необходимые материалы

Список материалов и компонентов:

  • Преобразователь 24 В 50-60Вт. У моего трансформатора есть вторичная линия 9В, которая пойдет на логические элементы, в то время как первичная линия пойдет на паяльник. Также можете использовать понижающий преобразователь 5В для элементов, и отдельно внутреннее содержимое блока питания 24В для паяльника.
  • Микроконтроллер ATMega8.
  • Корпус. Подойдет любая коробка из твердого материала, предпочтительно металлическая, можно взять корпус от блока питания. Можно заказать такой корпус .
  • Двухсторонняя медная плата 100х150 мм.
  • Поворотный регулятор от старого кассетного магнитофона. Работает отлично, нужно только заменить колпачок регулятора.
  • ЖК-дисплей HD44780 16х2.
  • Радиокомпоненты (резисторы, конденсаторы и т.д.).
  • Стабилизатор напряжения LM7805 или аналогичный ему.
  • Радиатор размером не больше корпуса TO-220.
  • Сменный наконечник HAKKO 907 .
  • МОП-транзистор IRF540N.
  • Операционный усилитель LM358N.
  • Мостовой выпрямитель, две штуки.
  • 5-контактное гнездо и штекер к нему.
  • Выключатель.
  • Штепсельная вилка на ваш выбор, я использовал разъем от старого компьютера.
  • Предохранитель 5А и держатель для предохранителя .

Время на сборку – примерно 4-5 дней.

Что касается источника питания, то вы можете сделать вполне жизнеспособные версии/дополнения. Например, можно получить блок питания 24В 3А , использовав LM317 и LM7805, чтобы сбросить напряжение до.
Все детали из этого списка можно заказать с китайских интернет-площадок.

Шаг 2: День первый – продумываем электрическую схему





У паяльника HAKKO 907 много клонов, еще существует две разновидности оригинальных жала (с керамическими нагревательными элементами A1321 и A1322).

Дешевые клоны – примеры ранних копий, с применением ХА-термопары и керамического нагревателя самого паршивого качества, или вовсе с нихромовой катушкой.

Клоны чуть подороже практически идентичны оригинальным HAKKO 907. Определить оригинальность можно по наличию или отсутствию маркировки на оплетке провода бренда HAKKO и номера модели на нагревательном элементе.

Можно также определить подлинность изделия, измерив сопротивление между электродами или проводами нагревательного элемента паяльника.

Оригинал или качественный клон:

  • Сопротивление нагревательного элемента – 3-4 Ом
  • Термистор — 50-55 Ом при комнатной температуре
  • между жалом и ESD заземлением — меньше 2 Ом

Плохие клоны:

  • На нагревательном элементе – 0-2 Ом для нихромовой катушки, больше 10 Ом для дешевой керамики
  • на термопаре – 0-10 Ом
  • между жалом и ESD заземлением – меньше 2 Ом

Если сопротивление нагревательного элемента слишком велико, скорее всего он поврежден. Лучше обменяйте его на другой (если есть возможность) или купите новый керамический элемент A1321.

Питание
Чтобы вы не запутались в схеме, преобразователь на ней изображен как два преобразователя. В остальном схема довольна проста и у вас не должно возникнуть трудностей с ее чтением.

  1. На выходе каждой вторичной линии напряжения устанавливаем мостовой выпрямитель. Я купил несколько выпрямителей 1000 В 2 А хорошего качества. Преобразователь на 24В линии выдает максимум 2А, а паяльнику нужна мощность 50 Вт, получается общая расчетная мощность будет примерно 48 Вт.
  2. К линии вывода 24В подключен сглаживающий конденсатор 2200 мкф 35 В. Кажется, что можно было взять конденсатор емкостью поменьше, но у меня в планах подключение дополнительных приборов к самодельной станции.
  3. Для снижения напряжения питания контрольной панели с 9В до 5В я использовал регулятор напряжения LM7805T с несколькими конденсаторами.

Управление через ШИМ

  1. На второй схеме изображено управление керамическим нагревательным элементом: сигнал с микроконтроллера ATMega идет на МОП-транзистор IRF540N через оптрон РС817.
  2. Значения резисторов на схеме условные, и в окончательной сборке могут быть изменены.
  3. Пины 1 и 2 соответствуют проводам нагревательного элемента.
  4. Пины 4 и 5 (термистор) соединяются с разъемом, к которому подключим операционный усилитель LM358.
  5. К пину 3 подключено ESD заземление паяльника.

Подключения к плате контроллера

Основа паяльной станции – микроконтроллер ATMega8. На этом микроконтроллере достаточно разъемов, чтобы не использовать сдвиговые регистры для входов/выходов и сильно упрощает дизайн устройства.

Три пина ОС для ШИМ дают достаточно каналов для будущих дополнений (например, второй паяльник), а количество каналов АЦП дает возможность контролировать температуру нагрева. На схеме видно, что я добавил дополнительный канал для ШИМ и разъемы для датчика температуры на будущее.

В правом верхнем углу находятся разъемы под поворотный регулятор (А и В для направлений, плюс кнопка-выключатель).
Разъем для ЖК-дисплея разделен на две части: 8 пинов – под питание и данные (пин 8), 4 пина – под настройки контраста/фоновой подсветки (пин 4).

ISP коннектор не вводим в схему. Для подключения микроконтроллера и его перепрограммирования в любой момент я установил DIP-28 разъем.

R4 и R8 контролируют усиление соответствующих схем (максимально до ста крат).
Какие-то детали будут изменены в ходе сборки, но в целом схема останется такой.

Шаг 3: День 2 – подготовительная работа


Корпус, который я заказал, оказался слишком мал для моего проекта, или компоненты оказались слишком велики, поэтому я заменил его на более вместительный. Минусом стало то, что и размер паяльной станции увеличился соответственно. Зато появилась возможность добавить дополнительные приборы – диодную лампу для комфортной работы, второй паяльник, разъем под жало для пайки припоем или дымоудалитель, и т.д.

Обе платы были скомпонованы в один блок.

Подготовка

Если вам повезло, и вы раздобыли подходящее гнездо для паяльника HAKKO, пропустите два параграфа.
Сначала я заменил родной штекер на паяльнике на новый. Он цельнометаллический и с блокирующей гайкой, это значит, что он всегда будет на своем месте и практически вечный. Я просто отрезал старый 5-типиновый штекер и припаял новый вместо него.

Для разъема сверлим отверстие в стенке корпуса. Проверьте, входит ли разъем в отверстие, и оставьте его там. Остальные компоненты передней панели мы установим позже.

Припаяйте к разъему 5 проводков и смонтируйте 5-типиновый разъем, который пойдет на плату. Затем вырежьте отверстия под ЖК-дисплей, поворотный регулятор и 2 кнопки. Если вы хотите вывести кнопку включения на переднюю панель, под нее тоже нужно вырезать отверстие.

На последней фотографии видно, что для подключения дисплея я использовал шлейф от старого флоппи-дисковода. Это отличный вариант, также можно использовать шлейф IDE (от дисковода жёстких дисков).

Затем подключите 4-хпиновый разъем к поворотному регулятору и если вы установили кнопки, подключите и их.
По углам выреза под дисплей хорошо было бы просверлить 4 отверстия под монтажные маленькие винты, иначе дисплей не будет держаться на своем месте. На заднюю панель я вывел разъем под шнур питания и выключатель.

Шаг 4: День 2 – Делаем печатную плату





Вы можете использовать мой чертеж для печатной платы, или сделать свой, удовлетворяющий вашим требованиям и техническим характеристикам.

Шаг 5: День 3 – Завершение сборки и кодировка

На этом этапе обязательно нужно проверить напряжение в ключевых точках вашего агрегата (5VDC, 24VDC выводы и т.д.). Стабилизатор LM7805, МОП-транзистор IRF540 и все активные и пассивные компоненты не должны нагреваться на этом этапе.

Если ничего не нагрелось и не загорелось, можно собирать все компоненты на места. Если ваша передняя панель уже собрана, вам осталось только припаять провода преобразователя, плавкий предохранитель, разъема питания и выключателя.

Шаг 6: Дни 4-13 – Микропрограммное обеспечение

Пока я пользуюсь сырым и непроверенным микропрограммным обеспечением, поэтому я решил отложить его публикацию, пока не напишу самодиагностирующую отладочную подпрограмму. Я бы не хотел, чтобы ваш дом или мастерская пострадали от пожара, поэтому дождитесь окончательной публикации.

Рассказать в:

Профессиональные паяльные станции импортного производства обладают большим набором сервисных функций, но очень дороги и недоступны большинству радиолюбителей. Поэтому радиолюбители сами разрабатывают схемы управления паяльником. В основном это простейшие регуляторы мощности на основе тиристоров, и чаще всего - на напряжение 220 В. Между тем, паяльник на 220 В (особенно старый) - не только электро и пожароопасный инструмент, он может стать "палачом" для современных радиокомпонентов. Кроме того, тиристорный регулятор мощности является сильным источником радиопомех.
Для увеличения пожаробезопасности регуляторы снабжают таймерами, отключающими паяльник через определенный промежуток времени.

Для электробезопасности применяют паяльники на низкое напряжение - от 6 до 42 В, которые, к тому же, безопасны и для радиокомпонентов.
Как показывает практика, для нормальной работы достаточно 5-6 ступеней регулировки мощности. Появление микроконтроллеров позволяет значительно расширить функции самодельной паяльной станции.

Постоянный контроль за положением паяльника (лежит на рычаге подставки или снят с него);
- наличие таймеров разогрева и отключения паяльника от сети;
- светодиодная шкала выходной мощности;
- звуковая сигнализация для привлечения внимания;
- пять ступеней выходной мощности (60, 70,80,90, 100%);
- автоматический переход в дежурный режим при длительных остановках в работе,
- автоматическое отключение от сети по истечении определенного времени простоя.

Все функции управления работой паяльной станции выполняет микроконтроллер pic16f84a (рис.1). При нажатии на кнопку "bкл."(sb1) подается напряжение на первичную обмотку трансформатора Т1. Питание со средней точки вторичной обмотки Т1 через выпрямитель vd2-vd3-r1 и стабилизатор vd1-c1-da1-c5 подается на микроконтроллер dd1. Микроконтроллер инициализируется и включает через транзисторный ключ vt1 реле К1, которое контактами К1.1 блокирует кнопку включения. Одновременно включается светодиод vd5, сигнализируя включение питания. В начальный момент напряжение на паяльник не подается, так как на выводе 12 dd1 устанавливается высокий уровень, открывающий транзистор vt2, который шунтирует r10 и отключает регулятор da2. Светодиоды vd7 vd12 не горят. Программа микроконтроллера проверяет, находится ли паяльник на рычаге станции. На конце рычага прикреплен флажок, который открывает световой канал оптрона vu1 - когда паяльник снят, и закрывает - когда паяльник положен на рычаг. Если паяльник оказался не на рычаге, следует серия звуковых сигналов "sos" (азбукой Морзе) В течение этого времени следует положить паяльник на рычаг, иначе микроконтроллер отключит реле К1 и полностью обесточит станцию контактами k1.1

Если при включении паяльник находится на рычаге, то оптрон vu1 закрыт, и на выводе 17 dd1 - высокий уровень, следует звуковое приветствие и включается режим 100% мощности для разогрева паяльника. Транзисторы vt2 vt7 при этом закрыты, и выходное напряжение стабилизатора da2 максимально. Оно определяется сопротивлением r10. Во время разогрева индикатор vd12 включен. По истечении 2 минут короткий звуковой сигнал предупреждает о включении номинальной мощности (в данном случае 70%). При этом высоким уровнем с вывода 8 dd1 включается светодиод vd9 и открывается ключ vt5, который подключает параллельно резистору r10 резистор r20. Их эквивалентное сопротивление определяет выходное напряжение da2, соответствующее 70% мощности паяльника. Кнопками sb2 и sb3 можно переключать 6 ступеней мощности по кругу. Выходное напряжение стабилизатора da2 на каждой ступени получается за счет параллельного подключения к r10 дополнительных резисторов r16, r19, r20, r22, r25, коммутируемых транзисторными ключами vt2 vt7

При снятии паяльника с рычага микроконтроллер включает сторожевой таймер, который предупреждает пользователя через каждую минуту коротким звуковым сигналом, что паяльник не на рычаге Если паяльник не положить на рычаг в течение 5 минут, следует тревожный сигнал и полное отключение от сети. Когда паяльник кладется на рычаг, происходит сброс сторожевого таймера.

Если паяльник долго не снимается с рычага, через 5 минут следует звуковое предупреждение, а еще через 5 минут микроконтроллер переводит паяльник в дежурный режим (чуть разогретый). В дежурном режиме паяльник может находиться 20 минут, после чего следует звуковой сигнал, и станция отключается от сети.

При снятии паяльника с рычага, когда он находился в дежурном режиме, автоматически включается полная мощность на 1 минуту для разогрева. Дежурный таймер сбрасывается. При нажатии на кнопку "Выкл " (sb4) звучит сигнал окончания работы, и станция выключается.

Детали.
В данной конструкции используется самодельный паяльник (24 В/30 Вт) Интегральные стабилизаторы напряжения da1 и da2 заменимы на отечественные КР142ЕН5А и КР142ЕН12 соответственно. Трансформатор Т1 - 220/30 В с выводом от средней точки. Можно применить Т1 без вывода средней точки и запитать стабилизатор da1 от источника 30 В через больший гасящий резистор r1 и стабилитрон vd1. Диоды vd2, vd3 в этом случае не устанавливаются. Реле К1 - малогабаритное, импортное, на напряжение 24 В. Транзисторы в ключах - любые с допустимым обратным напряжением не менее 40.. 50 В. Возможно применение транзисторных сборок. Капсюль bf1 - электромагнитный, типа sd160701 фирмы tdk, от старого компьютера, с сопротивлением катушки 60 Ом. Если применяется низкоомный излучатель, его следует включить через транзисторный усилитель. Оптопара vu1 с открытым оптическим каналом - от старого факсимильного аппарата Возможно применение оптопары диод-транзистор от дисководов или от "мышки" Светодиоды - любые, с разным цветом свечения.




Схема собрана на двух односторонних печатных платах Первая - размерами 65x90 мм (рис.2) - плата процессора, вторая - 50x90 мм (рис.3) - плата регулятора. На процессорной плате кнопки и светодиоды припаяны со стороны печатных проводников (рис.4). Реле, стабилизатор 5 В и звуковой капсюль также установлены на процессорной плате Предохранитель fu1, диодный мост, конденсаторы фильтра, регулятор da2, ключи vt2...vt7 с соответствующими резисторами r15. r25 установлены на плате регулятора Микросхема da2 припаяна к плате со стороны печатных проводников и прикреплена к ребристому радиатору размерами 60x90x40мм. Микроконтроллер dd1 установлен на панельку для удобства извлечения при возможной модификации программы. Платы соединяются между собой ленточным кабелем. Внешний вид собранного устройства показан на рис.5.

Настройка.
В зависимости от входного напряжения da1 рассчитывается гасящий резистор r1, так чтобы на входе стабилизатора было напряжение 8...10 В. Потребляемый da1 ток с включенным bf1 - около 60 мА Резисторы r16, r19, r20, r22, r25 при настройке заменяют по очереди цепочкой из последовательно соединенных постоянного резистора сопротивлением 1 кОм и переменного 20 кОм. Включают соответствующий режим и переменным резистором устанавливают напряжение на выходе da2, необходимое для получения установленной мощности паяльника. В режиме "stand by" паяльник должен быть слегка теплым. При программировании микроконтроллера можно установить иные задержки таймеров, кратные 1 минуте, эквивалентным 16-разрядным числом.

Адреса констант задержек приведены в табл.1, адреса ячеек для включения режима после прогрева паяльника - в табл.2. Управляющая программа микроконтроллера на Ассемблере представлена в табл.З, а карта прошивки - в табл.4. Несколько слов о модернизации станции В ней можно использовать блок на микросхеме КР1182ПМ1 для регулирования нагрева сетевого паяльника (220 В/100 Вт) Изменение программы при этом не требуется Микросхема регулятора мощности подключается к станции через оптронные ключи Описанное устройство с успехом можно применить для других приборов (утюг плойка и тп)

Рис. 3. Подключение переферии

Паяльная станция основана на МК PIC16F887. Не могу сказать что это оптимальный вариант, особенно учитывая тот факт что распиновка в корпусе TQFP вызывает у меня шок и желание отрезать лишнюю часть (судя по всему, голову) у разработчиков, да и пора переходить на ARM архитектуру (к примеру LPC1114 стоит в 2-а раза дешевле а может гораздо, гораздо больше...). Просто они у меня есть, вот я и решил их пристроить...

Усилитель термопары собран на широко распространенном ОУ lm358. Используются обе половины, одна для паяльника, вторая для фена, Коэффециент усиления может быть подрегулирован подстроечными резисторами VR1 и VR2.

От использования промышленных ЖКИ было решено отказаться по друм причинам: "стандартный" протокол (особенно для контроллера HD44780), вызывает теже эмоции, что и распиновка ПИКа в TQFP))), ну и цена от 180 рублей, поэтому индикатор взят от телефона Nokia 1100 (40 рублей за новый китайский). Так же подойдут дисплеи от 1110/1200, правда их не так удобно паять. Как вариант, можно сделать следующим образом:

Рис. 4. Вариант использования дисплея без коннектора

Турбина фена и паяльник включаются посредством полевых транзисторов (я питал их от одного БП на 24В). Стоит отметить, что для фена нужно где-то 36В. На 24В в максимуме дует на так сильно, но вполне достаточно для нормальной работы. Кстати турбина включается полевиком BUZ90:D - перебор, конечное, но работает). Негревательный элемент фена включается посредством тиристора. Схема вклюючения стандартная. Развязка с МК посредством оптопары.

Паяльник взят от станции Solomon (SL-10,SL-20,SL-30), так же можно поставить паяльник от станции Lukey-702 или другой с термопарой и нагревателем на 24В. Фен использован от станции Lukey-702. У него турбина встроена в ручку в отличие от Lukey-852, хотя нагревательный элемент и термопара одинаковые.

Назначение кнопок:

  • PB1: Увеличение температуры паяльника
  • PB2: Уменьшение температуры паяльника
  • PB3: Увеличение температуры фена
  • PB4: Уменьшение температуры фена
  • PB5: Увеличение скорости вращения вентилятора турбины
  • PB6: Уменьшение скорости вращения вентилятора турбины
  • PB7: Включение/выключение паяльника
  • PB8: Включение/выключение фена
  • Сохранение настроек происходит при выключении паяльника или фена.

    Фотографии устройства





    Добрый день, Уважаемые Читатели! Сегодня речь пойдет о сборке паяльной станции. Итак, поехали!
    А началось всё с того, что я наткнулся на вот этот трансформатор:

    Он на 26 Вольт, 50 Ватт.
    Как только я его увидел, мне в голову сразу пришла блестящая мысль: собрать паяльную станцию на основе этого трансформатора. На Али я нашёл вот этот . По параметрам он идеально подходит – рабочее напряжение 24 вольта, а потребляемый ток 2 ампера. Я его заказал, через месяц он пришел в ударостойкой упаковке. На картинке жало немного пригорело, ибо уже подключал паяльник к трансформатору. Разъем я приобрёл на рынке, сразу с коннектором для четырёх проводов.


    Но подключать паяльник напрямую к трансформатору слишком просто, неинтересно, да и жало так быстро испортится. Поэтому я сразу начал думать над блоком управления температуры паяльника.
    Вначале я продумал алгоритм: микросхема будет сравнивать значение с переменного резистора со значением на терморезисторе, и, исходя из этого, будет либо всё время подавать ток (нагрев паяльника), либо подавать его «пачками» (удержание температуры), либо не подавать и вовсе (когда паяльник не используется). Для этих целей отлично подойдёт микросхема lm358 – два операционных усилителя в одном корпусе.

    Схема регулятора паяльной станции

    Что ж, перейдем непосредственно к самой схеме:


    Список деталей:
    • DD1 – lm358;
    • DD2 – TL431;
    • VS1 – BT131-600;
    • VS2 – BT136-600E;
    • VD1 – 1N4007;
    • R1, R2, R9, R10, R13 – 100 Ом;
    • R3,R6,R8 – 10 кОм;
    • R4 – 5,1 кОм;
    • R5 – 500 кОм (подстроечный, многооборотный);
    • R7 – 510 Ом;
    • R11 – 4,7 кОм;
    • R12 – 51 кОм;
    • R14 – 240 кОм;
    • R15 – 33 кОм;
    • R16 – 2 кОм (подстроечный);
    • R17 – 1 кОм;
    • R18 – 100 кОм (переменный);
    • C1, C2 – 1000uF 25v;
    • C3 – 47uF 50v;
    • C4 – 0,22uF;
    • HL1 – зелёный светодиод;
    • F1, SA1 – 1A 250v.

    Изготовление паяльной станции

    На входе схемы стоит однополупериодный выпрямитель (VD1) и гасящий ток резистор.


    Далее на DD2,R2,R3,R4,C2 собран блок стабилизации напряжения. Этот блок понижает напряжение с 26 до 12 вольт, нужных для питания микросхемы.


    Затем идёт сам блок управления на микросхеме DD1.


    И заключающий блок – это силовая часть. С выхода микросхемы через индикаторный светодиод сигнал поступает на симистор VS1, который управляет более мощным VS2.


    Также нам понадобится несколько проводов с коннекторами. Это не обязательно (провода можно и напрямую паять), но для Фен-Шуя в самый раз.


    Для печатной платы нам понадобится текстолит размерами 6х3 см.


    Переносим рисунок на плату лазерно-утюжным методом. Для этого распечатываем вот этот файл, вырезаем. Если что-то не перенеслось, дорисовываем лаком.

    (cкачиваний: 262)



    Далее бросаем плату в раствор перекиси водорода и лимонной кислоты (соотношение 3:1) + щепотку поваренной соли (она – катализатор химической реакции).


    Когда лишняя медь растворится, достаём плату, промываем проточной водой


    Затем снимаем тонер и лак ацетоном, сверлим отверстия


    И всё! Печатная плата готова!
    Осталось залудить дорожки и правильно впаять компоненты. Впаивайте, ориентируясь на эту картинку:


    Следующие места надо соединить перемычками:


    Так, плату мы собрали. Теперь надо бы всё это поместить в корпус. Основанием послужит квадрат из фанеры размером 12.6х12.6 см.


    Трансформатор будет посередине, закреплённый шурупами на небольших деревянных брусках, плата будет «жить» рядом, прикрученная к основанию через уголок болтом.
    Эта схема может питаться и от 12V, что делает её универсальной. Для этого надо исключить из общей схемы DD2,R2,R3,R4 и C2. Также терморезистор на схеме следует заменить постоянным резистором номиналом 100 Ом.
    На этом моя статья подходит к концу. Всем удачи в повторении!
    P.S. Если паяльник не запустится, проверьте каждое соединение на плате!